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Abstract

Current gait recognition approaches only consider
individuals walking frontoparallel to the image plane.
This makes them ingpplicable fer recognizing individu-
als walking from different angles with respect to the im-
age plane. In this paper, we propose a kinematic-based
approach to recognize individuals by gait. The proposed
epproach estimates 3D human walking parameters by
performing a least squares fit of the 3D kinematic model
to the 2D silhouette extracted from a monocular image
sequence. A genetic algorithm is used for feature selec-
tion from the estimated parameters, and the individu-
als are then recognized from the feature vectors using
a nearest neighbor method. Ezperimental results show
that the proposed approach achieves good performance
in recognizing individuals walking from different angles
with respect to the smage plane.

1. Introduction

Current human recognition methods, such as finger-
prints, face or iris biometrics, generally require a coop-
erative subject, views from certain aspects and phys-
ical contact or close proximity. These methods can
not reliably recognize non-cooperating individuals at
a distance in real-world changing environmental con-
ditions. Moreover, in various applications of personal
identification, many established biometrics can be ob-
scured. Gait, which concerns recognizing individuals
by the way they walk, has been used as a important
biometric without the above-mentioned disadvantages.

In recent years, some approaches have already been
employed in automatic gait recognition. Niyogi and
Adelson [6] make an initial attempt in a spatiotemporal
{(XYT) volume. They first find the bounding contours
of the walker, and then fit a simplified stick model on
them. A characteristic gait pattern in XYT is gener-
ated from the model parameters for recognition. Little
and Boyd [4] propose a model-free approach making
no attempt to recover a structural model of human
motion. Instead they describe the shape of the motion
with a set of features derived from moments of a dense
flow distribution. Similarly, He and Debrunner’s [1} ap-
proach detects a sequence of feature vectors based on
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Hu's moments of motion segmentation in each frame,
and the individual is recognized from the feature vec-
tor sequence using hidden Markov models. To avoid
feature extraction process which may reduce the relia-
bility, Murase and Sakai [5] propose a template match-
ing method to calculate the spatio-temporal correla-
tion in a parametric eigenspace representation for gait
recognition. Huang et al. [2] extend this approach by
combining canonical space transformation (CST) based
on canonical analysis, with eigenspace transformation
(EST) for feature selection.

However, existing gait recognition approaches only
consider individuals walking frontoparallel to the im-
age plane. In this paper, we propose a kinematic-
based approach to recognize individuals by gait. The
proposed approach estimates 3D human walking pa-
rameters by performing a least squares fit of the 3D
kinematic model to the 2D silhouette extracted from a
monocular image sequence. Qur approach eliminates
the assumption of individuals walking frontoparallel to
the image plane, which is desirable in many gait recog-
nition applications.

2. 3D Human Modeling
2.1. Human Kinematic Model

A human body is considered as an articulated ob-
ject, consisting of a number of body parts. The body
model adopted here is shown in Figure 1, where a cir-
cle represents a joint and a rectangle represent a body
part (N: neck, S: shoulder, E: elbow, W: waist, H: hip,
K: knee, and A: ankle).

Most joints and body part ends can be represented
as spheres, and most body parts can be represented
as cones. The whole human kinematic model is rep-
resented as a set of cones connected by spheres [3].
Figure 2 shows that most of the body parts can be ap-
proximated well in this manner. However, the head is
approximated only crudely by a sphere and the torso
is approximated by a cylinder with two spheroid ends.

2.2. Matching between 3D Model and 2D Silhouette

The matching procedure determines a parameter
vector x so that the propcsed 3D model fits the given



Figure 1. 3D Human Kinematic Model.

Figure 2. Body part geometric representation.

2D silhouette as well as possible. For that purpose, two
chained transformations transform human body local
coordinates (z,y, z) intc image coordinates (z',y")[7]:
the first transformation transforms local coordinates
into camera coordinates; while the second transfor-
mation projects camera coordinates into image coor-
dinates.

Each 3D human body part is modeled by a cone
with two spheres s; and s; at its ends, as shown in
Figure 2 [3]. Each sphere s; is fully defined by 4 scalar
values, {x;, ¥, z:, s}, which define its location and size.
Given these values for two spheroid ends (z;, ¥y, 2, 7:)
and (x;,¥;,2;4,7;) of a 3D human body part model, its
projection F;; onto the image plane is the convex hull
of the two circles defined by (=}, ¥}, 7}) and (z},¥},7})-

If the 2D human silhouette is known, we may find
the relative 3D body parts locations and orientations
with the knowledge of camera parameters. We propose
amethod to perform a least squares fit of the 3D human
model to the 2D human silhouette. That is, to estimate
the set of sphere parameters x = {X; : (&, ¥i, 2, 7:)}
by choosing x to minimize

error(x; 1) = Y (Pula',y) - I2',9")), (1)
=y el
where I is the silhouette binary image, Py is the binary

projection of the 3D human model to image plane, and
z', y' are image plane coordinates.
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Figure 3. Diagram of the proposed approach
for human gait analysis.

2.3. Model Parameter Selection

Human motion is very complex due to so many
DOFs. To simplify the matching procedure, we use
the following reasonable assumptions: (1) the camera
is stationary; (2) people are walking before the camera
at a distance; {3) people are moving in a constant direc-
tion; (4) the swing direction of arms and legs parallels
to the moving direction.

According to all the above-mentioned assumptions,
we do not need to consider the waist joint, and only
need to consider 1 DOF for each other joint. Therefore,
the elements of the parameter vector of the 3D human
kinematic model is defined as follows:

¢ Stationary parameters — Radius r; (11): torso(3),

shoulder, elbow, hand, hip, knee, ankle, toe, and
head; Length I; (9): torso, inter-shoulder, inter-
hip, upper arm, forearm, thigh, calf, foot, and
neck.

¢ Kinematic parameters — Location (z,y) (2); Angle

#; (11): neck, left upperarm, left forearm, right
upperarm, right forearm, left thigh, left calf, left
foot, right thigh, right calf, and right foot.
With these 33 parameters, the projection of the human
model can be completely determined.

3. Model Parameter Estimation

The realization of cur proposed approach is shown
in Figure 3, and the major processing steps are detailed
in the following subsections.

3.1. Sithouette Extraction

Assuming that people are the only moving objects
in the scene, they can be extracted by a simple back-
ground subtraction method. Netice that an area cast
into shadow often results in a significant change in in-
tensity without much change in chromaticity. Given



a video sequence containing moving pecple and the
corresponding background image, for each frame f; in

the sequence, the color value difference Ap;(z,y) = .

[Ip:(z, ¥) — pe(, y)|| is computed for each pixel, where
pi(z,¥) and py(z,y) are RGB color values of the pixel
at (z,y) in the ith frame and background image, re-
spectively. The chromaticity is computed as

Tc(may) =
gelz. 1)

r(z,¥)/(rlz, y) + glz, ¥) + Mz, 1))
glz, y}/ (r(z,y) + g(z,y) + bz, y)).

We have

ATm'(-'L', y) =
Agei(z,y) =

[res(z,4) — rev(z,9)|
|gei{z, ¥) — geb{z, ).

Given thresholds ¢; and ts, if

(Ap,-(:c,y) > tl) A ((ATC,'(I:, y) > t2) N (Agci(wi Q) > tZ))

the pixel at (z,y) is determined to be part of the mov-
ing objects; otherwise, it is part of the background.

After the silhouette has been cleaned by a pre-
processing procedure, its height, width and centroid
can be easily extracted for motion analysis. In ad-
dition, the moving direction of the walking person is
determined as follows

-1 _flhai—hpn s .
- tan hayn—hxyn? if > yn; {2)
tan—1 LAzhn) | 2 Gtherwise.
hyn—hnp ’

where f is the camera focus length, ¥, and yy are the
horizonta! centroid of the silhouette in the first and
Nth frame, and h; and hy are the height of the sil-
houette in the first and Nth frame.

3.2. Stationary Parameter Estimation

The stationary parameters include body part length
parameters and joint radius parameters. Notice that
human walking is a cyclic motion, so a video sequence
can be divided into motion cycles and studied sepa-
rately. In each walking cycle, the silhouette with min-
imum width means that people stand straight in that
frame and that means the most occlusion; the silhou-
ette with maximum width means the least occlusion
and, therefore, it is more reliable.

To estimate the stationary parameters, we first se-
lect some key frames (4 frames in our experiments)
which contain more reliable silhouettes, and then per-
form matching procedure on the key frames as a whole.
The corresponding feature vector thus includes 20 com-
mon stationary parameters and 13*4 individual kine-
matic parameters, Next, we first initialize these pa-
rameters according to the human statistical informa-
tion. Then, the set of parameters is estimated from
this initial parameters by choosing a parameter vector
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X to minimize the least square error in equation (1)
with respect to the same kinematic constraints.

After the matching algorithm is converged, the es-
timated stationary parameters are obtained and will
be used for kinematic parameter estimation of other
frames. At the same time, the estimated kinematic
parameters of key frames will be used for prediction.

3.3. Kinematic Parameter Estimation
To reduce the search space and make cur matching
algorithm converge faster, we use the predicted param-

eters from the previous frames as the initialization of
the current frame:

gl = gli-1) 4 (pli=1) _ gli-2))
y(i) — y(i—l) + (y(i—l) _ y(i—2))
@ = gb-U (3)

After the matching algorithm i$ converged, the es-
timated kinematic parameters are obtained for each
frame.

4. Feature Selection and Gait Recogni-
tion ‘

In this paper, we only use angle features for gait
recognition, including: (1) average head angle, (2)
average leading upperarm angle, {3} average lagging
upperarm angle, (4) average leading forearm angle,
(5) average lagging forearm angle, {6) average lead-
ing thigh angle, (7) average lagging thigh angle, (8)
average leading calf angle, and {9) average lagging calf
angle. In our approach, foot angles are not consid-
cred here because the foot is too short to be well
matched in our approach; while average angles are
used because they are less sensitive to noise than max-
imum or minimum angles. The distance between fea-
ture vectors is measured in a weighted Euclidean space
D(x,y) = /¥ o, wi(z: — 4%, where n is the dimen-
sion of each feature vector. In this equation, the weight
w; indicates the importance of the ith feature for gait
recognition. Considering these weights depend on data
in the given gait database, we aquire them by genetic
algorithm whose fitness function is defined as the re-
trieval accuracy in the training dataset.

5. Experimental Results

The video data used in our experiment are real hu-
man walking data recorded in outdoor environment. In
these video data, there is only one walking person at
the same time. Six different people walk along different
directions (within [—x/4, 7/4] along the image plane).
The size of image frames is 180 x 240. In our experi-
ments, we first manually divide video data into single-
cycle sequences, and then select 15 sequences from each
person: 10 sequences for training and 5 sequences for
testing. Figure 4 shows some sample sequences in our



Figure 4. Sample sequences in our gait database.

Figure 5. An example of matching results.

gait database (The first 3 rows from training dataset
and the last row from testing dataset).

The proposed approach was implemented in Mat-
lab. The least square matching is done using the con-
str function in the Optimization Toolbox. This func-
tion uses a Sequential Quadratic Programming (SQP)
method. Figure 5 shows an example of matching re-
sults.

In our experiments, we use Genetic algorithm to ob-
tain the weights of the features on the training dataset.
The weight vector so obtained is [3,2,2,2,1,3,0,3,0]
which means that lagging thigh and calf angles play
an unimportant role for recognition in the training set.
Using these weights, our approach achieves 88% recog-
nition on the training dataset using a 5 nearest neigh-
bor (5-NN) Leave-One-Out method (7 errors out of 60
training sequences). The performance on the testing
data is 77% recognition (7 errors out of 30 testing se-
quences). After examining the experimental results, we
find that most of the errors occur primarily due to sil-
houette segmentation errors. The matching algorithm
during the stationary parameter estimation phase can
converge by applying constraints on all parameters.
For kinematic parameter estimation, an inaccurate seg-
mentation error causes errors. We are investigating
various error recovering method to overcome this prob-
lem. Walking at different speed does not affect the per-
formance since we can change the sampling rate from
the original video.
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6. Conclusions

In this paper, we proposed an approach to estimate
3D human mction from a monocular image sequence
for automatic gait recognition. The proposed approach
performs a least squares fit of a complex 3D human
model to the 2D human silhouette. To reduce the
search space and make our matching algorithm con-
verge faster, the proposed approach also includes a
prediction procedure. Experimental results show that
the proposed approach achieves good performance us-
ing automatic gait recognition to recognize individuals
walking from different angles with respect to the image
plane.
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